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INTRODUCTION 

One of the many efforts undertaken to increase the life of gun tubes 

and/or increase their erosion resistance involves the use of liners fabricated 

from materials differing from the base material of the gun tube.  Typical 

properties sought in these materials, many of which are refractory materials 

or alloys of them, are high melting points for protection against erosion due 

to the high flame temperatures, different elastic moduli to effect trans- 

mission of loads to the base gun tube, etc.  Currently most designs are of the 

two-layer system or liner-jacket type and with a variation that the liner may 

be coated or not.  This report does not consider coatings for reasons to be 

mentioned later. 

In this report, the response of monobloc and multi-layered large caliber 

gun tubes due to a typical firing schedule is calculated. This response is 

found using a finite difference computer code reported in references 1 and 2 

for transient temperatures and thermo-elastic-plastic stresses.  The program 

was updated to accept time dependent boundary conditions and to apply to 

multiple layers. A consistent set of data for a firing pulse was found in 

reference 3 for a specific weapon and this configuration was chosen for this 

study. 

^Vasilakis, J. D., "Temperatures and Stresses Due to Quenching of Hollow 
Cylinders," Transactions of the Twenty-Fourth Conference of Army 
Mathematicians, ARO Report 79-1. 
^Vasilakis, J. D. and Chen, P. C. T., "Thermo-Elastic-Plastic Stresses in 
Hollow Cylinders Due to Quenching," Transactions of the Twenty-Fifth 
Conference of Army Mathematicians, ARO Report 80-1. 

^Kovacs, J. E., "Computer Methodology For Large Caliber Artillery Cannon 
Heating and Cooling," Technical Report ARSED-TR-80001, December 1980. 



The computer program is a two part program. Knowing gas temperatures and 

heat transfer coefficients as a function of time during the firing cycle 

allows the computation of the transient temperatures in the gun tube. This is 

accomplished in the first part of the program. These temperatures are then 

used in the second part to calculate the associated thermc-elastic stresses. 

The program is capable of computing the thermal response of the tube for any 

desired firing cycle, thus monitoring an average temperature use at the bore. 

This can be used in cook-off studies, cook-off being the undesirable condition 

of premature propellant ignition. The temperatures at any time are saved on 

disk and are used as input to the stress portion of the program. The interest 

here is in the mechanical and thermal stresses due to the pressure pulse and 

the thermal pulse respectively.  It should be mentioned that the theinaal 

problem and stress problem are treated as uncoupled. 

DESCRIPTION OF THE PROBLEM 

The partial differential equation for determining the temperature in a 

cylinder is given by 

19        3T 3T 
 ■ (rkL(T) ~) = pL(T)cL(T) ~ (1) 
r 9r       3r 3t 

where the superscript L refers to the layer number and 

T is temperature, 

k^(T) is thermal conductivity in layer L, 

p^(T) is density in layer L, 

c^T) is specific heat in layer L, 

r is radial distance 



and t is time.  The problem is assumed to be axisymnetric and axial effects 

are ignored. Figure 1 shows a typical geometry. At the interface between 

layers, the following continuity conditions must apply: 

continuity of temperature 

■jL XL+1 

^L 

(2) 

^L" 

and continuity of heat flux 

3T 
kL(T) — 

3r 

3T 
= k^+ld) — 

3r 
(3) 

where rL is the radius to the outer surface of the L^^ layer.  Contact 

resistance between layers is ignored at this time. 

The above quantities are dimensionless, normalized to the properties of 

the steel layer.* Thus if the thermal conductivity can be written as 

kL(T) = kSLgokL(T) (4) 

where k^(T) is the dimensioned thermal conductivity of the L*^^ layer and k^l-gQ 

is the thermal conductivity of the steel layer at some reference temperature, 

then for L = 1 
kl(T) 

feSL 
kHT) 

So 

and L > 1, 
kL(T)  k^Q 
■ = kL(T) 

k^So  k^So 

(5) 

(6) 

*In the results that follow, one of the layers was steel.  Other definitions 
or material properties can be used so long as one is consistent. 



FIGURE 1.    TYPICAL MULTI-UYERED GEOMETRY 



The specific heat and density are defined in similar fashion. Also 

r        T 
r = -  , T =  (7) 

°        Tgas 
I 

where Tg^s is initial gas temperature, and time 

X =  (8) 

The stresses are computed in the second part of the program. Again, 

finite differences are used.  The equations of compatibility and equilibrium 

are written at each node, 

—- + - (oL - OLQ) = 0 (9) 
3r   r 

3ee^ 1 
-—- + - (eLg _ eL ) . Q (10) 
3r   r 

where L identifies the layer. Between layers, the continuity conditions for 

radial stress and radial displacement must be satisfied. Between the L and 

L+1 layer, therefore, 
a\  = a^+lj. and u^ = u^+l (11) 

Initial stresses may exist due to fabrication methods used for the multi- 

layered cylinder. The Prandtl-Reuss equations are used to relate the incre- 

mental stress and strain. The assvraiption of plane strain is used. The equa- 

tions (9) and (10) are written in finite difference form. Expressions 

relating incremental stress to incremental strain similar to those of Yamada, 

et al* but including the effect of temperature are used to express equation 

^Yamada, Y., Yoshimura, N., and Sakuri, T., "Plastic Stress-Strain Matrix and 
Its Application For the Solution of Elastic-Plastic Problems by the Finite 
Element," International Journal of Mechanical Sciences, 1968, V 10, pp. 343- 
354. 



(9) in terms of the incremental strains. 

For the computation of the thermal stresses, the new temperature 

distribution and temperature increments are used at each time step. As the 

yield criterion is approached, the temperature increments are themselves 

divided into smaller increments to maintain smaller load steps. 

BOUNDARY CONDITIONS 

It is important when solving for the response due to firing pulses of 

these geometries to have a set of consistent boundary conditions.  For the 

thermal response, either the temperature versus time on the boundaries or the 

gas temperature and heat transfer coefficients are required and for the pres- 

sure pulse, the bore pressure versus time.  Kovacs^ considered the transient 

temperature response for several firing cycles, see Figure 2, and did give in 

his report a complete set of data. The data is based on a program relying on 

empirical information for heat flux and applied to a large caliber weapon with 

chrome plating.  It was felt that the heat transfer coefficients generated 

would apply to a steel monobloc tube or to a multi-layered tube where the 

steel layer was at the bore. Lacking better input, however, the data was used 

in all cases. 

Future plans include the incorporation of an initial program for the 

purpose of analytically computing the heat transfer coefficients for the 

designated multi-layer properties. The problems encountered in comparing 

responses of different multi-layered designs would then be alleviated. 

^Kovacs, J. E., "Computer Methodology For Large Caliber Artillery Cannon 
Heating and Cooling," Technical Report ARSED-TR-80001, December 1980. 
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RESULTS 

Several runs have been made, mainly to show the different problems that 

can be accommodated by the computer program. Once a geometry has been chosen, 

either monobloc or multi-layer, and the material properties found, the first 

part of the program can be run for temperature response versus time. One can 

look at both the temperature distribution throughout the tube wall and the 

change in bore temperature in time.  If a firing cycle consists of a number of 

firing pulses and pauses, the bore temperature can be monitored in time.  If 

stresses are required, the temperature distributions at each time step are 

saved in a file which is subsequently used as input to the second part of the 

computer program. These temperature distributions are used to compute the 

thermal stresses. The associated stress pulse can also be applied to the 

tube, either by itself for a mechanical response or with the thermal loads for 

a combined response.  As mentioned before, however, the thermo-mechanical 

problem is considered to be uncoupled. If the distortion energy criterion is 

satisfied, then an incremental thermo-elastic-plastic analysis will be per- 

formed. It should be noted that while some examples showing elastic-plastic 

response are presented, the loading generated from the data of reference 3 was 

not of sufficient magnitude to cause this and the stress pulse was increased 

to cause the program to perform a plasticity solution.  If the problem is more 

realistically modeled with material properties and yield strength a function 

of temperature, it may not be necessary to artificially induce this type of 

solution. 

^Kovacs, J. E., "Computer Methodology For Large Caliber Artillery Cannon 
Heating and Cooling," Technical Report ARSED-TR-80001, December 1980. 



Figure 3 shows the result of the problem of thermal response due to the 

heat pulse for a monobloc tube.  The response to a single piilse is shown for 

different time increments.  An important function of this type of analysis is 

to be able to predict bore temperatures under various firing cycles and for 

long firing periods.  Being able to use coarser time Increments allows the 

prediction of bore temperatures for longer periods. Figure 4 shows the 

response of a monobloc tube for about five cycles. 

Table I shows the properties for the multi-layered geometry chosen.  The 

liner is a tantalum tungsten alloy (Ta-lOW) with a steel jacket. The bore 

diameter is 3.351 inches, the outside diameter is 5.6 inches, and the 

interface diameter is 4.1 inches.  The properties are assumed constant in 

temperature but a variation in temperature is allowed. Figures 5 and 6 are 

equivalent to Figures 3 and 4 for a multi-layered tube. Figures 7 and 8 show 

the stress response of a monobloc tube to a stress pulse and a thermal pulse, 

respectively.  It should be noted that most of these results show the effect 

at the bore. During the early stages of the response, there is little effect 

on the rest of the tube. 

Figure 9 shows the stress response of a multi-layered cylinder (Ta-lOW/ 

Steel).  The material behavior is assumed to be elastic. The change in the 

tangential stress at the bore with time is shown for the stress pulse (M 

curve) and for the temperature distributions (T curve). The combined curve 

shows the computed stresses due to both the thermal and mechanical loading. 

Since only elastic behavior occurs, however, the same combined loading curve 

could be arrived at by assuming the results for the individual loads. 
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An elastic-plastic response due to the applied pressure pulse is shovm in 

Figure 10. The curve labeled pressure is actually the radial stress at the 

bore, Oj.,  and the pressure should be \a-^\.    The other three curves are the 

response of a monobloc steel tube and two multi-layered systems, a Ta-lOW 

liner with a steel jacket and a steel liner with a Ta-lOW jacket. The figure 

shows mainly the effect of the elastic modulus of the materials.  The Ta-lOW 

liner, having a modulus approximately one third less than steel, transmits the 

load towards the interior of the tube better than the other configuration 

which has a more rigid liner.  Figure 11 was included just to show that the 

stresses throughout the wall thickness are computed.  The figure shows the 

response of a Ta-lOW liner/steel jacket cylinder to combined thermo-mechanical 

loads. 

Figure 12 shows the elastic response due to thermo-mechanical loads in a 

multi-layered cylinder with a steel liner and Ta-lOW jacket. Figure 13 shows 

the thermo-elastic-plastic response for the same configuration.  The radial 

stress and the tangential stress at the bore are shown as the change in time. 

CONCLUSIONS 

The above results are an indication of the type of problems to which the 

computer program can be applied. Several layers can be handled and for the 

two-layer geometry, initial stresses due to interference fits (for fabrication 

reasons) can be calculated. In either program part, the properties can be 

considered as a function of temperature. While the program does not have the full 

responsibility of a general purpose finite element program, for the allowed 

geometry, a wide variety of behavior can be examined. 

18 
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